Author Affiliations
Abstract
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Indoor organic and perovskite photovoltaics (PVs) have been attracting great interest in recent years. The theoretical limit of indoor PVs has been calculated based on the detailed balance method developed by Shockley–Queisser. However, realistic losses of the organic and perovskite PVs under indoor illumination are to be understood for further efficiency improvement. In this work, the efficiency limit of indoor PVs is calculated to 55.33% under indoor illumination (2700 K, 1000 lux) when the bandgap (Eg) of the semiconductor is 1.77 eV. The efficiency limit was obtained on the basis of assuming 100% photovoltaic external quantum efficiency (EQEPV) when EEg, there was no nonradiative recombination, and there were no resistance losses. In reality, the maximum EQEPV reported in the literature is 0.80–0.90. The proportion of radiative recombination in realistic devices is only 10-5–10-2, which causes the open-circuit voltage loss (ΔVloss) of 0.12–0.3 V. The fill factor (FF) of the indoor PVs is sensitive to the shunt resistance (Rsh). The realistic losses of EQEPV, nonradiative recombination, and resistance cause the large efficiency gap between the realistic values (excellent perovskite indoor PV, 32.4%; superior organic indoor PV, 30.2%) and the theoretical limit of 55.33%. In reality, it is feasible to reach the efficiency of 47.4% at 1.77 eV for organic and perovskite photovoltaics under indoor light (1000 lux, 2700 K) with VOC = 1.299 V, JSC = 125.33 µA/cm2, and FF = 0.903 when EQEPV = 0.9, EQEEL = 10-1, Rs = 0.5 Ω cm2, and Rsh = 104 kΩ cm2.
theoretical efficiency limit realistic efficiency losses organic photovoltaics perovskite photovoltaics indoor photovoltaics 
Chinese Optics Letters
2023, 21(12): 120031
作者单位
摘要
1 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2 School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, China
3 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Frontiers of Optoelectronics
2022, 15(4): s12200
作者单位
摘要
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
perovskite solar cells n-doping, biguanide fill factor (FF) electron transporting layer 
Frontiers of Optoelectronics
2018, 11(4): 360–366
作者单位
摘要
1 南昌大学教育部发光材料与器件工程研究中心, 江西 南昌330047
2 晶能光电(江西)有限公司, 江西 南昌 330096
以0.1 MK2S2O8+KOH和氙灯分别作为刻蚀剂和紫外光源, 采用光增强湿法刻蚀转移衬底的垂直结构GaN基LED的n型GaN, 对N面有电极和没有电极的芯片的n型GaN层进行刻蚀。结果表明, 在相同的刻蚀条件下, N面有电极的n型GaN层刻蚀速率明显大于没有电极的n型GaN; 而它们的均方根粗糙度(RMS)则结果相反。刻蚀后的形貌呈圆锥型凸起。20 mA下刻蚀后的裸芯光输出功率较刻蚀前提高了88.5%。
光学材料 出光效率 光增强湿法刻蚀 垂直结构GaN基LED Si衬底 
光学学报
2009, 29(1): 252

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!